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ABSTRACT

Consider solutions (G(x,E),H(x,E)) of a on Karman equations for the

swirling flow between two rotating coaxial disks

(1.1) Hlv + HH''' + GG' = 0

and

(1.2) EG" + HG' - H'G = 0

with boundary conditions

(1.3) H(0,) = H'(O,S) = H(1;E) = H'(1,s) = 0

(1.4) G(O,E) = s, G(l,'e) = 1, Isl < I

In this work we establish the existence of solutions for C small enough. In

fact, if n is a given positive integer with sign s = (-1 )n then there is -

for ' > 0 sufficiently small - a solution with the additional property:
G(x,7) has n interior zeros. If n > I there are at least two such

solutions. If s = 0 there is at-least one such solution for every positive
integer n. The asymptotic ' shape*K-of these solutions is described.

AMS (MOS) Subject Classifications: 34B15, 34E15, 35QI0

Key Words: Ordiinary differential equations, Rotating fluids, Similarity

solutions, Asymptotic behavior, Existence, Nonuniqueness

Work Unit Number 1 (Applied Analysis)
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SIGNIFICANCE AND EXPLANATION

Under appropriate conditions the steady-state flow of fluid between two

planes rotatinq about a common axis perpendicular to them may be described by

two functions H(x,e), G(x,e) which satisfy the coupled system of ordinary

differential equations

CH i v + HH''' + GG' = 0

11 CG"I + HG1 H'G = 0

The quantity e > 0 is related to the kinematic viscosity and = R is

usually called the Reynolds number.

These equations have received quite a bit of attention. First of all,

people who are truly interested in the phenomena modeled by these equations,

e.q. fluid dynamicists, are interested in this problem. However, as these

equations have been studied by a variety of mathematical methods, they have

taken on an independent interest. The major methods employed have been (i)

Matched Asymptotic Expansions and (ii) Numerical Computations. In both

approaches technical problems have appeared. There may be "turninq points,"

i.e. points at which H(x,c) = 0. Such points require special and delicate

analysis within the theory of (i). As numerical problems, these equations are

"stiff" - precisely because C is small. The occurrence of "turning points"

only makes computation more difficult.

For these reasons, these equations have become "test" problems for

methods of "matchinq in the presence of turninq points" and "stiff O.D.E.

solvers." However, when one has "test problems," one needs to know the

answers. Unfortunately here the answers are largely unknown.

In this report we establish the existence of a multiplicity of solutions

of small c > 0. In addition we give a complete asymptotic description of the

shape and structure of these solutions. These results confirm the formal

asymptotic work of Watts [241 and qo much further. These results shot]d he

useful in checking numerical studies of this problem.

The responsihility for the wordinq and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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Introduction

In 1921 T. von Kirmin [51 developed the similarity equations for axi-symmetric,

incompressible, steady flow - "swirling flow". Let (q r,q,qx) be the coordinates of

velocity in cylindrical coordinates, (r,B,x). von Kirmhn assumed that there is a function

H(x,C) such that

qx = -H(x,E)

Then, as a direct consequence of the steady state Navier-Stokes equations one finds that

(see (I], (5]) there is a function G(x,Z) so that the velocity components are described by

q HI (X, C), q G(,C)qr 2 2 8s GX

The functions (G(x,C),H(x,C)) satisfy the equations

(1.1) £Hiv + HH''' + GG' - 0

(1.2) EG" + HG' - H'G - 0

The quantity £ > 0 is related to the bulk viscosity. Equation (1.1) can be integrated to

yield

1G2 1 )2
(1.3) CH''" + NH" + - - (H' = i

2 2

where p is a constant of integration.

In the case originally studied by von Kirmin, the flow above a single disk, we have a

problem on the infinite interval [0,"
] 

and the constant of integration is known, i.e.,

12
2

where Q. = G(-,c).
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If we consider the flow between two planes, x = 0, x - I rotating with constant

angular velocities A 0/2, 01 /2, then the quantity V - P(C) is unknown. This latter case

was first studied by Bathelor (I] and Stwarton (221 who gave conflicting argments and

conjectures. In this case the boundary conditions are

(1.4a) H(O,C) - H(1,C) = 0, (no penetration)

(1.4b) H'(0,C) = H'[0,C) = 0, (no slip)

(.4) G(OA) = Uo G(1,C) - a' 10O + I1I * 0

Many authors have studied this problem. Numerical calculations have been carried out

by Lance and Rogers [9), C. 3. Pearson (151, D. Greenspan (31, D. Schultz and D. Greenspan

[19), L. 0. Wilson and N. L. Schryer (261, G. L. Mellor, P. J. Chapple and V. K. Stokes

(12), N. D. Nguyen, 3. P. Ribault and P. Florent [131, S. M. Roberts and 3. S. Shipman

(18], H. B. Keller and R. K-H. Szeto (61. Formal matched asymptotic expansion methods have

been used by A. Watts (24] (who also did numerical calculations), K. K. Tam (231,

H. Rasmussen (17), B. J. Matkowsky and w. L. Siegmann [11]. Undoubtably many others have

also worked on this problem.

Nevertheless, the basic questions of "existence" and "uniqueness" have remained

unanswered. S. P. Hastings (4) and A. R. Elcrat (2) have proven existence and uniqueness

for large 6. Their arguments are essentially a perturbation about C = *. J. B. McLeod

and S. V. Parter (10) considered the special case where A 0 "1 0 0. They have shown the

existence of a solution for all c > 0 and; for these solutions, they gave a complete

discussion of the asymptotic behavior. These solutions are bounded. In fact

H(x,C) - O(r)

G(x,C) - 0(1)

There have been no results on the number of solutions. In (21) J. Serrin referred to

computational results of C. E. Pearson in the case U0 0 -41 1 0. Pearson's computations

indicated the existence of solutions which are not anti-symetric about x = - . Thus,

since (G(1 - x,C),-H(1 - x,)) is a solution whenever (G(x,C),H(x,C)) is a solution, these

computational results lead one to conjecture that there are several solutions. Indeed much

of the computational work since Pearson's early paper seems to confirm this conjecture.

-2-
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If we consider the flow between two planes, x = 0, x 1 rotating with constant

angular velocities 2 0/2, 0 l/2, then the quantity P - U() is unknown. This latter case

was first studied by Batchelor [1] and Stewartson (221 who gave conflicting arguments and

conjectures. In this case the boundary conditions are

(1.4a) H(OC) - H(lC) - 0, (no penetration]

(1.4b) H'(OC) - H'(1,C) = 0, (no slip]

(I.4c) G(O,6) 'lo, G(l,C) . Olt Iaol + loll 0 0

Many authors have studied this problem. Numerical calculations have been carried out

by Lance and Rogers (91, C. E. Pearson (151, D. Greenspan (31, D. Schultz and D. Greenspan

[19], L. 0. Wilson and N. L. Schryer 1261, G. L. Mellor, P. J. Chapple and V. K. Stokes

(12], N. D. Nguyen, J. P. Ribault and P. Plorent (13], S. M. Roberts and J. S. Shipman

(18], H. B. Keller and R. K-H. Szeto (61. Formal matched asymptotic expansion methods have

been used by A. Watts 124) (who also did numerical calculations), K. K. Tam (231,

H. Rasmussen (17], B. J. Matkowsky and W. L. Siegmann (11]. Undoubtably many others have

also worked on this problem.

Nevertheless, the basic questions of "existence" and "uniqueness" have remained

unanswered. S. P. Hastings (4] and A. R. Elcrat (21 have proven existence and uniqueness

for large 9. Their arguments are essentially a perturbation about C = . J. B. McLeod

and S. V. Parter [101 considered the special case where £0 = -1 * 0. They have shown the

existence of a solution for all C > 0 ando for these solutions, they gave a complete

discussion of the asymptotic behavior. These solutions are bounded. In fact

H(x,e) - O(r)

GC(xc) = 0(1)

There have been no results on the number of solutions. In [21] J. Serrin referred to

computational results of C. E. Pearson in the case A0 " -I 12 0. Pearson's computations0 1

indicated the existence of solutions which are not anti-symmetric about x - - j. Thus,

since (G(l - x,0)0-H(1 - xe)) is a solution whenever (G(xc),H(xe)) is a solution, these

computational results lead one to conjecture that there are several solutions. Indeed much

of the computational work since Pearson's early paper seems to confirm this oot:jecture.
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In [8] we considered the asymptotic behavior of families of solutions (G,H) which

satisfy the bounds:

(1.5a) IH(x,c)l + II' x,C)l + IG(x,C)l 4 B

There is a point xO. 0 < x0 < 1 and a constant 6, 0 < 6 B such that

(1.5b) H(xoE)l > 6

Interestingly enough we discovered that there are no such families. Moreover, a careful

analysis of our discussion makes it clear that the source of the difficulty is the

condition that

Lim {IoI + jail) * 0
s O

Furthermore, the physical boundary conditions (.4a), (.4b) together with the conditions

(1.5a), (1.5b) imply that (in the limit as C + 0+) the function H(x,e) may not have

nodal zeros, i.e.

(1.6) Lim H(x,e) may not change sign

Therefore we turned to the question of the existence of "pathological" solutions

(G,H) which satisfy the differential equations (1.1), (1.2), the bounds (1.5a), (1.5b),

the boundary condition (1.4a), (1.4b) and also satisfy 0I.4c) with

(1.7a) Io (C)l + IQ (C)j * 0, 0 < 9

(1.7b) Lim {(I0(C)I + I ,(C)I - 0

Moreover, (1.6) implies these solutions should be essentially "positive" in the sense that

H(x) - Lim H(x,e) A 0

Remark: The hypothesis (1.5a), (.5b) implies that - after the extraction of a subsequence

if necessary, the functions H(x,E) are convergent to a non-trivial limit function.

The results of [8) imply that H(x) must then have a special form. That is, there

are n numbers, o0 oi.. ,n, with

(1.8a) 0. 0 < 1 < **° < an =1

And, on the interval

[o.,oj+1,

-3-



we have

(1.8b) -"(x) - -[I - Cos (X-

where

(1. c) T = 2(aj+ 1 - .)
-

In this paper we prove that if e > 0 is small enough there are such pathological

solutions. Moreover, such solutions exist for all n, n - 1,2,...

The main result is

Theorem I: Let n ) 1 be a given integer, let go,gl be given real numbers with

(1.9) gl 0 , sign g, - (-1)n*

Then there is an E > 0 and an L = L(C) such that, for all E 6 (O,i] there is a pair

of functions (G(x,C),H(x,e)) defined on the interval (0,L(c)] which satisfy the

differential equations (1.1), (1.2) on that interval. In addition these functions satisfy

the boundary conditions

(1.o10a) H(0,6) = H(L(C),t) = 0

(1.10b) H'(0,C) = H'(L(C),E) - 0

(1.10c) = go 2/3, G(L(),C) gI

The functions (G(x,e),H(x,c)) also satisfy (1.5a), (1.5b). The function H(x,e) has

n "humps". To be precise, there are exactl, n + I numbers,

0 - a0 < aI(E) < "** < On-1 (E) < a (C) - L(C)

at which H(x,C) has (relative) minima, that is

(1.11) H,(o(),c) 0 0, H-(o(e),C) > 0

Moreover,

H(O j(E),C) ),-ke 1
/ 3

and, between the a 0(e), H(x,e) is essentially positive. In fact, H(x,c) is essentially

given by (1.8b) while the function G(x,c) has the form

(1.12a) G(x,E:) " (-1)J'TjH~x,e), a (C) < x < a j+l (e)

-4



where

1l. 12h) T ~ 2r0 1

Finally, there is a constant T < 0 such that

(1.13) Lim T (e)=

Remark: The characterization of G(x,c) qiven by (1.2a), (1.2b) can be made more precise.

Case I1: ) ~0

In this case G(x,e) has exactly n interior zeros, say Y1 ,y21 . and

(1Ya 'V < .oij =1,..n

(1.14b) a . - YV = ( 0C 3 )l j = 1,2,...,

Case 2: qO 0

In this case G(x,c) has exactly (n + 1) zeros, say Y.' 1l and (1.14a),

(1.14b) hold. Moreover

(1.14c) 0()0 < , -Y0 Y 0= (1/

Once one has proven this result we ohtain the patholoqical solutions on the interval

10,11 by takinq

(1.15a: x=x/L(e), C' = C/L(C)

(1.15h) HH,')=14,C), a(;,C') = L(C)G(x,c)

The functions (,) satisfy (1.1), (1.2) - with x replaced by x and c replaced by

E.. In addition these functions satisfy the boundary conditions (1.4a), (1.4h), (1.4c)

with

0( 0 0

1 EI 1 1 W

Finally, if we set

(1.16a) E - I
I W1~T IQ L /

1 WIE- L
51 3

1 C



C1

T-

-j(0

HCE

J

-J C

1-D1
0E

-6--



(1.16c) G(x,C) - G(x, 0) =

we obtain a solution of (1.1), (1.2), (1.4a), (1.4b), (.4c) with C replaced by ', x

replaced by x, with Q replaced by Q0, and S1 replaced by QI where
0- %/%, 1 1

For completeness sake we formulate this last result as

Theorem II: Let n > I be an integer. Let s be a given real number. Then for C

small enough there is a solution (G,H) of (1.1), (1.2), (1.4a), (1.41, (1.4c) with

(1.17) 0 = s, i =1.

This solution may be described in a manner similar to the description given in Theorem I.

There are exactly (n + 1) numbers

0 -- 0 ( C) < 11(C) < . . < on -(1 ) < n 50 -i n

at which H(x,C) has its relative minima, i.e.,

(1.18a) H'(a (o),C) = 0, H"(o (e),e) > 03 3

Moreover, between the 0 (C) the function H(x,C) is essentially positive. That is, for3

any given 6 > 0, 26 < a - 0 we have, for small C,
3+1 3

(1.18b) H(x,C) > 0, o.(C) + 6 < x < a j+1() - 6

Furthermore

(.19) Lim( ) a = =

The function G(x,c) has at least n nodal zeros; 0 c y (C) < Y < - < < 1.

Moreover

(1.20a) y (C) < a (C), a - y = 0(C), j =1,2,...,n
3 3 3 3

If s * 0 and

sign s = (-I)n+l

then G(x,E) has (n + 1) zeros. The additional Zero, Y'0 (C) satisfies}0

(1.20b) 0 < Y0 () = O(C) .

Furthermore

(1.21) UHI - ( -), 2 GU (C-2

-7-



Remarks One can choose to characterize the solution ( G,) by the number of *humps" or by

the number of interior (nodal) zeros of G(x~e). Suppose we choose to discuss the number

of humps. If s # 0 lot (G~x,C),H(x,C)) be the solution described in Theorem 11 with

n humps and

a . Isle, ~1--

Then

H(x,e) - - H(1 - x,c)
-1

G(x,e) - 2 G(1 - x,J)

is another solution of (1.1), (1.2), 1.4a), (1.4b) and (1.17). On the other hand, if one

chooses to look at the number of interior zeros of G(x,C) we have the following situation

Case 1: s > 0. For every even ii ; 2 there are at least two solutions (GH), (GH) of

(1.1), (1.2), (1.4a), (1.4b) and (1.17) with G(xc),G(x,e) having exactly E interior

zeros and which also satisfy

H(X,C) > 0, H(x,e) > 0, (essentially)

Let n = and (G(x,C),H(x,)) be the solution described in Theorem II. From (1.9) we

see that

g1 
> 

0, go 
> 0

Hence G(x,e) has exactly n = i interior zeros. In addition, let n = - 1 and

(G(xe),H(x,e)) be the solution described in Theorem II. Then

g<0, go < 0 (essentially)

and G(x,e) has exactly n + 1 = n interior zeros.

Case 2: s < 0. For every odd i ) 3 there are at least two solutions (GH),(GUH) of

(1.1), (1.2), (1.4a), (1.4b) and (1.17) with G(x,e),G(x,C} having exactly F interior

zeros and also satisfy

H(x,e) > 0, H(XC) > 0, (essentially)

If 5 = 1 there is at least one solution (G,H) of (1.1), (1.2), (1.4c), (1.4b), and

(1.7) with G(xeC) having exactly 5 - 1 interior zeros while

H(X,E) > 0 (essentially).

Let n - i and (G(x,C),M(x,r)) be the solution described in Theorem II. From (1.9) we



see that

gl < 0, go > 0

Hence G(x,C) has exactly n = R interior zeros. If > 1 let n - - 1 and let

(G(x,C),H(x,C)) be the solution described in Theorem II. Then

g1 > 0, go < 0

and G(x,C)

Case 3: s = 0. For every I 1 (even or odd) tnere is at least one solution

(G(x,E),H(x,E)) with G(x,e) having exactly R interior zeros and

H(x,e) > 0 (essentially)

Let n = R and let (G(x,C),H(x,c)) be the solution described in Theorem II.

The basic Theorem I is proven via a "shooting" argument. The basic estimates follow

from the following analysis. When H(x,C) is small, i.e.

H(X,E) = O(
2/ 3

then one studies the "stretched" problem: let

x - x 0

(1.22a) =
C1/3

(I. 22b) h( ,C) = C-2/3 H(x,C), g(&,C) = C-2/3 G(x,e)

The functions (g,h) satisfy the equations
1c2/3g2_1 2 2/ 13

(1.23a) h''' + hh" + g - - (h') = C/ 2/ = - 1/3
2 2

(1.23b) g" + hg' - h'g - 0

with i = O(E), i.e., = O(1). We find that

(1.24a) h(C,C) h( ) ; a quadratic function

of the form

6 02
(1.24b) C - 2

Fur thermore

g( ,C) g( )

where q( ) satisfies

(1.25) + -



The solutions of this problem are discussed in the Appendix. On the other hand, when

H(X,C) is "large", then the development in 18) shows that H,H',H",H''',G,G',G" can all

be estimated in terms of

G(x,e)
H(x, E)•

Fortunately, we do not require that H(X,C) be too large. In fact,

H(x,e) > ke 2
/ 3

is sufficient. Hence the requirements of "small" H(X,e) and "large" H(x,c) overlap and

we are able to give a complete analysis.

Realizing these facts one proceeds as follows.

Starting Procedure (See Theorem 3.2.)

For every choice of i,h 2 ,cl,g 0  there is a solution (g,h) of (1.23a), (1.23b) on the

interval (O,a] which also satisfies the boundary conditions

(1.26a) h(O,E) - h'(0,) 0 0, h"(O,e) - h 2 > 0

(1.2bb) g( ) go* g(m,) - h(,)

The results of Section 3 show that this solution (GH) of (1.1), (1.2) - originally

1/3
defined only on the interval [0,o / 1 may be continued to entire interval [0,2w - 6)

and, on this interval

h201.27) H(x,C) 0 -2 (1 Co csTX], G(x,C) 0 THq(x,E)

where 0 < r < 1 and T + I as a . The results of Section 4 show that this solution

may in fact be continued to the larger interval 2[I + _ 6 where T is a negative

number described in the Appendix. Furthermore, for small C we have

h 2
(1.28a) H(x,c) - --. (1 - coS TI(x - 2w)], 21 + 6 4 x 2w[1 + -L]

(.2Hb) G(X,E) " -T 1h(x,r), 21! + 6 4 X ' 2W[! + - 6

(1.28 ) T, . T' ll •

Thus we have exhibited 2 "humps". Proceeding in this way we construct a solution with

-10-



n humps. Let xn = x n() be the n'th relative minimum of H(XC). In Section 5 we

employ an elementary degree theory argument to show that one may choose ,h2 so that

H(XnPC) - 0

G(XnPC) =g

provided that

sign g, " 1-n+1

In this way we prove Theorem I.

-ii
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2. Existence of Solutions AwaX from Turning Points

In this section we are concerned with solutions of the equations (1.1), (1.2)

(2.1) CH + HH'" + GG' - 0,

(2.2) CG" + HG' - H'G - 0

with initial data

(2.3a) d HV, v 0,1,2,3, d G(x 0 )/dxv G V 0,1

where

(2.3b) H0 > 0

In dealing with this case we use a basic estimate of Kreiss (lemma 2.1 of [7)) which we

include for the sake of completeness.

Lemma 2.1: Consider the differential equation

(2.4) t dx + a(x)y = F(x), a 4 x ,

where a, F are continuous functions with

a(x) > 0

and C > 0 is a positive constant. The solutions of (2.4) satisfy the estimate

(2.5) ly(x)I 4 IF/al U + O(x,Q)Iy(u)I, a 4 x.

here

(2.6a) M! max If(t)I.,x C 14t~x

(2.6b) O(x,Q) = exp{- f x a(t)dt}

Proof: The solutions of (2.4) are given by

x t F't

y(x) -y(U)U(x,u9) + fexp. i f a(s)dsl dt
a x

We rewrite this as

Y(x) a(s)dsl

-'12-



For fixed x > a the function

t
exp{

2
-f a(s)dsl

x

is monotone increasing as t increases from a to x. The estimate (2.5) follows from

the mean value theorem.

Lemma 2.2: Let (G(xOC),H(x,C)) be a solution of (2.1), (2.2), (2,3a), (2,3b). Let

x
S(x,x0) expi- f f(t,C)dt}

xo0

Let

Then, for x > x. we have

(2.7a) IG'(x,g)l 4 IG/HI x IH'0Ix + s(x,X 0 )jGII

(2.7b) IG"(x,CiI 4 KG/HIx *l IH"Ix I + S(x,x 0 )1G2 1

(2.7c) JI'"I(x,e)j 4 KG/HI OV IG'I XOX+ s(x,x0 ))H3 1

Proof: The estimates (2.7a), (2.7c) follow from Lemma 2.1 and equations (2.2), (2.1)

respectively. Differentiating (2.2) we have

(2.b) CGI' + HG" -H"G

rhe estimate (2.7b) follows from (2.8) and Lemma 2.1.

Lemma 2.3-: Let GH he a solution of the above problem in some interval x 0 4 X 4 (

with the following properties

(2.9) H > 0. IG/HI 'X M x I - X0 f- min(1/M,1)

Thest there are constants K u which depend only on H V V 0,1,2,3; G, V 0,1 and

M anld taut on C such that



IdJG/dxj a 1 Klj ,  j - 0,1 ,

(2.10)

Kd
3 H/dx

3  x 1 • K , 3 0,1,2,3

Also

(2.11) 1I1 X x 4 14 K22  + IG2 1, G2  - G"(x ,)

Proof: For any solution of the above equations we may apply Lemma 2.2 and obtain the

estimates (2.7a), (2.7b), (2.7c). Also, the Taylor expansion

x
H'(x) H I + (x - x0 )H2 + f ( - x0)H'()d

x 0

gives us
1 XO21,

(2.12) .'0I INII + Ix - x01 2 +" (x - 0) 2 IH

Therefore by (2.9) and (2.7)
1 O2M21H

I 2 N
2
1' +I + MIG 11 - (xL - x,),M4 IH''I +

x0 x Xox 1  3 2 Xo 1

+ 142I11 + (xI - x0)11H2 1} + MIG1I + 1.431

By (2.9) (X1 - Xo)
2
M
2 

• 1 and x1 - x 0 • 1. Therefore

I 2"2(I"II + I"21) + 2MIG 11 + 21H1 •
X0 , X1

Thus we have proved the estimate for H'''. By Taylor expansion (see (2.12)) we obtain the

estimates for H,H',H", and by (2.7a) and (2.7b) they follow also for G,G',G".

We shall now use these estimates to derive existence theorems.

Theorem 2.1: Consider the initial value problem (2.1)-(2.3) and assume that

(2.13) HO 6 > O

Then there is an interval x0 4 x C x, x - x0 > 0, independent of E, in which the

above problem has for all £ with 0 ( £ C I a unique solution. Moreover the estimates
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(2.10) of Lemma 2.3 are valid. The constants Kij depend only on Hv,V - 0,1,2,3;

G ,V - 0,1,2 and 6.

Proof: Let E > 0 be fixed. From the general existence theory for ordinary differential

equations it follows that there is an interval x0 C x 4 x, where the conditions of Lemma

2.3 are satisfied with M = 2(IG0 /H0 J + 1). We want to estimate x1 . Taylor expansion

gives us

jH(x) - H1 e (x - x0 )K21, IG(x) - G01 4 (x - x0)Kll
I

Therefore h(x) H0 ,  G(X)j 4 IGU + I"OI and IH(x)/G(X)l H for

0 • x - x0 C min(1/Kll,H 0/(2K 21 )) - x1 - x 0

Thus the solution exists in this interval and the theorem is proven.

Now consider the limit process E + 0. We want to prove

Theorem 2.2: Assume that G ,H% are functions of 6 with

(2.14a) lim Hv = Hv v = 0,1,2, lim Go = GO, HO ) > 0

Assume also that

(2.14b) H3,GI,G 2 are uniformly bounded

Let x0 ,x1  be as Theorem 2.1. Then the solutions of the initial value problem (2.1)-(2.3)

converge on any interval x0 + 6 Cx 4 x I , 6 
> 0 to the solution of the reduced problem

(2.15a) HHI''' + GG' = 0, d H/dxV = H V = 0,1,2

(2.15b) RC - RC= 0, (xO ) =G o

Proof: (2.14) and (2.10) show that

G*= 0(c) + 0

Differentiating (2.1) we obtain for y I H
iv  

the equation

Cy' + Hy + H'H'' + (G')2 + GG" 0

Therefore by Lemma 2.1 and (2.14)

(2.16) jy(x) C HH
'
'' + ( 2') + GG" + jy(Xo)lS(XXo

)

By (2.14) CHIC(x0) is bounded. Therefore y(x0 )s(x,x0 ) is hounded for x )x + 6.

-15-
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Therefore Ey + 0 and the theorem follows by standard compactness arguments. This proves

the theorem.

It is easy to see that the solution of (2.15) has the form

1M2IH(X) - N + sinT(x - x 0 ) + 2 (1 - COST(X - x0))(2.17)

G(X) - TH(x), T = G

Up till now we have only proved the convergence to G,H in the interval

x0 4 x 4 x1. However, we obtain immediately uniform convergence in any interval

x0 4 x 4 R, where H(x) 0 0, 0 any constant > 0. This we can also express in another

way. Let x < x0 < ; be the first points to the left and right of x0 with

H(i) = H(5) = 0. Then we can prove existence of solutions (G,H) of (2.1), (2.2) and

uniform convergence to (G,H) in any interval i < x0 4 x 4 x, < ;. (Of course, if we

move x0  then we have to change the initial conditions to obtain the same (G,H)).

In (8] we proved that a necessary condition to obtain an order one solution of the

rotating disc problem is that H'l() = H'() 0 i.e. we can write (G,H) in the form

2 21

Hence, we shall seek such solutions.

x- XX

-16-



For later purposes we write the equation (2.1) in another form. We inteqrate (2.1)

and get

(2.19) CH''' + HH" + - (G
2 

- H'2) = •
2

To obtain a limit solution of the form (2.18) it is necessary and sufficient that

urn U - 0 because a simple calculation shows that (CR) satisfies the equation
nn" +2. (.2 cR')

2  
0

For our purposes the riqht choice is

(2.20) C ; .

Instead of H3 we can give ; as initial condition and compute H3 from (2.19). In

particular H3 is bounded if

(2.21) HUH2 + 2. 2 - 0(t), P bounded

Finally we collect a number of formulas which we will need later.

Lemma 2.41 We can write the equations (2.1), (2.2) in the form

f 
-(n)-n f H(n)dnxx C

(2.22) H''H(x) = H'' )x0 e 0 - e G(t)G'(OdE
x0

x xo 0

Xo 0 & - H( G d

(2.23) G'(x) - G'(x 0)e + f e H()G(&)d&
x0

(2.24) G'(x) - (G(x)/H(x))H'(x) - CG"(x)/H(x)

(2.25) di- (G/H) - (HG' - GH')/H
2 

= -EG"(x)/H 2(x)

Also

f H(n)dn x ln dx

(2.2b) (G"(x) = 0"(xole + e

x0

Proot: These equations follow airectly from (2.1), (2.2) and (2.8).
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3. Exigtence of solutions when H0  is Small

We consider again the initial value problem (2.1)-(2.3) and write (2.2) in the

integrated form (2.13) with P of the form (2.14). Consider initial data of the form

(3.1) H0 . C2/3h0 H1 .Y1/3h1 t 
H2 - h2f ; -. , h0v > 0 V . 0,1,2

(3.2) Go . C2/3 got G1 . e1/391 gi V > 
0, v - 0rl•

1, h v~g v can be functions of r but we assume that

1 2
h 0 h2 - h, + E1/3 2

,g 0 ,g 1 ,h 0 ,h 1 ,h 2 and H3 I 1/3 2 90

are bounded independently of C. We assume also that

(3.3) G2 - hig 0 - h0 g 1 ) 0

and is bounded independently of C. We want to prove

Theorem 3.1: There is an interval x0 4 x 4 x1, x1 - x0 > 0 independent of C, in which

the above problem has a unique solution for all E with 0 < 6 4 1. Moreover

(3.4) 0 < 2 H2 2 H"(x) 4 1 H2  x0  x 4 x1

and the estimates (2.5) of Lemma 2.1 are valid. x 1 - x0 and the constants Kij depend

11only on HVV - 0,1,2,31g 0 /ho and Gv,v - 0,1,2. Also

(3.5) CG"(x) - O(e), H(x) ) H + - H (x - x0)2
0 4 2 0

Proof: Let x0 4 x 4 x1 be the largest interval satisfying (3.4). Then (2.20), (3.2),

(3.3) and (3.4) imply that G"(x) ) 0. Therefore by (2.19)

IG/HIxorX 1 • G0 /H0 - go/h0 - M

Thus Lema 2.1 shows that d H/dx , V a 0,1,2,3; dVG/dx
v

, V - 0,1,2 are bounded if (3.4)

holds and x1 - x0 4 min(1/Mi). By Taylor expansion

JH"(x) - H"(x 0 )I 4 (x - x0 )IH'''I x 0

Therefore, we can find xj, independent of C, such that (3.4) is valid. Then (3.5)

follows froa Lemma 2.1 and the assumption that h0 > 0, h1 > 0 and that G2  is hounded

independently of C. This proves the theorem.

t -18-



NOW we consider the limiting process C * 0. Assume that

S2/3h 0  0, C 
3
h 0, h 2+; 

> 
0, C 0, C/ 9

3
g I  O, g0 /ho T > 0.

g0,h0,g1 ,h1  can be large. However, we assume that ;-£
1
/
3
g2 are uniformly bounded

that

(3.6) g1  (go/h0 )hl - X/hO, h2 2h0h2 + 2 p/3p

where I > O,p are also uniformly bounded. This assumption guarantees that we have bounds

for

- 1/ 2G2 = L > 0 and H3 = P + - " g 0

By Section 2 and Theorem 3.1 (G,H ) converge in a neighbourhood of x, to a solution

(P,H) of the reduced equation. ( ,R) is of the form (2.12) with x = x 0 . We want to

derive a relation between TI and T. By (2.19) and (3.5)

G(x) G(x) x

HX ) H(Xo) f G xx 0 H (x)

with

x

e -f dx 4 const. C 1 dx
x H2  x0 (K + - H (x x01212

00 0 4 2 0

£ dx ( const C const.
- cost. 2 f + 2 H -3/-2 3/2

( 1 +O no(

i.e.

G(x 1 G(xo) 1 90 1(3.7) .x " + 0( T =  - + °0'"( 3/

Now let E 0 then G(X,)/H(x I ) + T and therefore

(3.8) T ,- golh o + 0(1/h3/2') = 1 + 0(1/h3/2)"

We consider now a two-point boundary value problem for the equations (2.1), (2.13) in

an interval

-19-



0 ( x X0 
=  

' i = const. > 0

The boun(lary conditions are

I 0 ((o -E2/3 gG(xO 0 1 > 0t

(3.9) H(O) - () 0 , H"(U) " h 2 > 0, G(0)

We want to prove

Theorem 3.2: The boundary value problem 
(2.2), (2.13), (3.9) has a solUtion with the

1/3-

following properties. G,G,G",H,H',HH can be estimated by n2 , li l go and £ 3P.

Also, u(nxU ) 
> 
0, G(x ) > 0 provided a is biq enough.

Proof: Introduce new variables by

x = 1/3;, G C 2
/ 3 g, H . e 2/3h

Then the above equations become

1 2/3 2 - h . 1/3-
h + C 9 +h

(0.10) h; g;

(3.11) h(O) = h(0) o 0, h'0) - h2, g(O) =go 
gg(o) = T1h()

we can solve the reduced equations
• " 1 12 o- h

(3.12) h + h, h -- h 0, h(O) = ;(0) 0 h() 2

(3.13) q + - u 0, g(0) -g, 4(a) T(C "

The solution of (3.10) is

(3.14) 

1 2

introducilng this expression into (3.13) and the boundary conditions gives 
us

"1 h 2 x2 . hxg - 0, (0) - g0' (a) 
2 Z

12(1)

(3.15) 
g 

+ T - 2

iby the Appendix the general 
solution of the differential equation 

(3.15) is of the

form

(3.1b) X XP 0( h )'/
3 ) + .r- h11

3  (. .h

11 2 2 2'~ ~ 2

where 1I(t) oecays exponentially for t 1, (0) * 0 and

€2( ' ¢ (t) '(t)

= , lim - I lim 2

tIw 2 t00 2t 
2

t* t t. x
+

Theretore, it a is sutficiently large, then
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. . . [-I h ..)

3.17) 2 " 1 1 1(0)

dnd

(3.18) g > U, g > 0, '/F - I for all sufficiently large x

By a standard perturbation argument it follows tnat the tull system (3.8), (3.9) has a

solution with

V d V V- 'V V h V V- V 1/3
(3.19) Ad g/dx - d g/dx a 0 a + -d h/dx d h/dxA 0  4 C , v 0,1,2

Also h H 0 implies

.. C31/3
(3.2U) 1 A 0,I CC

We return now to the oriqinal variables. By (3.17)

h 2 2/3 1/3 " /3
II(x) = -x + (E), ki(x) = h2 x + O(2/), H"(x) = h 2 + 0(CI/, H''(x) = h/ /

(3.21)

G = C 2 + O(C), G' . q1/3g + 0(c 2/), G" = g + 0(C1/3

This proves the theorem.

Assume now that a, h2, go' T, and I are tixed and let C + 0. At xt0 e /3

conditions ot Theorem 3.1 are satisfied. Thus (G,H) can be continued and converges to a

solution (CR) of the reduced equation (2.12). Here

(3.22) h 2 = H"(O) = H2

1 2
and T,T I satisfy the relation (3.8) with h 0 = a a + Q(C) i.e.

(3.23) T = T + 0(1/a 
3 ) + O(C)

We summarize the result in

Theorem 3.3: Consider the two-point boundary value problem (2.1), (2.13), (3.9). Assume

that h2 ' CO, t and -P are fixed and a sufficiently large let C 4 0. Then (G,H)

converges uniformly in any interval 0 4 x I < to a solution (Q,R) of the reduced

equation (2.12) with T and 112 satisfyin; the relations (3.22) and (3.23) respectively.
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4. Existence of Solutions Through a Turning Point

In the previous sections we have shown that we can construct a solution of (2.1),

(2.2) for 0 - x 4 x 4 xI < 2w which for C + 0 converges to a solution of the

reduced equations (2.12). For simplicity we assume that T > 0 otherwise we change G

to -G. Also, x, can be arbitrarily close to x. We shall now show that the solutions

of (2.1), (2.2) can be continued through the turning point ;. Let x, < ; be a point

near 1 where

H(x1 ) > 0, HI(x 1 ) < 0, H"(xl) " A2 > 0, G(xj) > 0, G'(x 1 ) < 0, G"(x 1 ) > 0

for all sufficiently small C. We want to show

Lemta 4.1. Consider (2.1) in the form (2.13) and assume that ; is given by (2.14). For

sufficiently small C there is a point x2 > x 1  with

2/3)  > 0, HI(x 2  - / < o, H"(

(4.1) H(x 2) -
2
/
3h 0 2) C 

1
/
3h 1 2 2 2  2 2 2

G(x 2 ) = C g0 > 0. G'(x 2 ) = C1/3 t 0

Here h0 > 0 is a sufficiently large constant dnd h1 ,g 0 ,g1  are constants which depend

only on h0  and not on C. Also

(4.2) H(x) > 0, H'(x) < 0, G(x) > 0, G'(x) < 0, G"(x) > 0

and H'''(x) is uniformly bounded and can be estimated independently of P in the whole

interval x1 4 x 4 x2 .

Proof: There are two possibilities.

1) H(x) > 2/3h 0  for all x x,. We want to show that there must be a point x3

where H(X) has a minimum. Let x, 4 x 4 x4 be an interval where G(x) > 0, H"(x) ) 0.

Then by (2.20) also G"(x) > 0 and (2.19) gives us

G. G(xI - G(x )
(4.3) 0C- -T" x cf -dx 4 V x 4x

1(X) (x) H 2 1(x) 1 4

Thus by Lemma 2.1 H''(x),G"(x) are uniformly bounded. Therefore, choosing x1

sufficiently close to x and x4 - x, sufficiently small quarantees

(4.4) -1 H 4 H"(x) 4 1 A X 4 x f x
2 2 2 2' 1l~ 4x

Also, in the same way as in Section 3
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x G'x dx 3/2
Cf - dx f const. 

< 
const. h 

2

2 12 *0
x H x1 (H(x) + - H2(x x))

11 4 2 2 4

i.e., for sufficiently large h0

G(x ) G(xl)
1 I G(X) 1(4.5) 2 H(x- - 4 H(X -- , i.e. G(x) > 0

Therefore we can find always an interval x4 x 4 x4  with the above properties whose

length x4 - x, does not depend on C and x,. Choosing x, sufficiently near to

makes H'(X) as small as we like because H,H' converge to AR'. Therefore (4.4)

implies that there must be a point x3 e (x1 ,x4 ) with H'(x 3 ) = U. At this minimum (2.13)

gives us
1 2 £ - ''

(4.6) HH" + I G = .- H''
2

For sufficiently small £ and - 1  (4.5) and (2.6c) show that H''' is bounded.

Therefore H(x3 ) = 0(C) which is a contradiction.

2). There is a point x2  with H(x 2) = 2/
3
h0  and H'(X) < 0 for x1 4 x 4 x2.

Using (4.3) we find again that G"(x) > 0 and that (4.4) and (4.5) hold for

2/3
x I 4 x 4 x2 . In particular G(x2 ) = C2/g 0 . Also, by (2.13),

IH'(x 2 )I = HH" + O(E) = O(1/3

Therefore by (2.18)

0 < -G'(x 2 ) 0(1/3)

By Lemma 2.1 the bound on H''' depends only on the bound for G/H which is independent

ot U. Therefore H''' can be estimated independently of u. This proves the lemma.

Now we can proceed as in Section 3. For x J x2 we introduce new variables

h(x) = H(x)/E
2/ 3

, g(x) = G(x)/
21 3

, x -x 2 = £1/3x, x 0

Then we obtain the equations (3.8)
(4.7) + hh +_L (

2 / 3 
92 - 2) =C1/3

t (4.7) 2~ g :

with boundary conditions
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01.0 h(O) ho, h(O) - n1 , h(O) - h2, g(O) - g0  g(O) - g,

Also

11/3(4.9) h (0) C = O( /), H''(A 2 ) is bounded independently ot ,

and

go/ho = = G(xl)/H(xl) + O(l/h3/2) = T + O( + h3/
2)

(4.10)
gl = TIhl + O(1/h0 ) " I + O( + 1/hO )

(4.9) and (4.7) show that

(4.11) 2hh 2 - h2= O(C 1/), i.e. h1 = - h + 0(C
1/ 3

and the uniform boundedness of Hk''(x) for x1 4 x 4 x2  shws that

(4.1k) lim h2  H2

L~a
we can solve the reduced problem

- 2 .2 h(O) h h(O) h
(4.13) h + hh - , h() = h0, 1,

(4.14) g + bg - gh 0 0, 9(O) - C, g(O) - g1

By (4.11) the solution of (4.13) is in any finite interval 0 4 x I x4 of the form

1 h -12 1/3
(4.15) h =1-h - + o(c

where x3  is determined by

1 2 0c
1
/
3
) i +o

hU =. h2x3 +i.e. 3  -

2i
-1 * -2

Replacing h in (4.14) by h' - and introducing a new variable

S21 /3

h j 2 ) ; 3 )

gives us 1/gve s2 2 2 1  
1/3 F h0  1/23

(4.16) d g/dC + t dg/dt - 24 = 0, 0 = (7 h2 3 1/3 O(C/3)

with boundary conditions

-1/3
(4.17) 0 got d;( 0 )/d4 = 2) -1

ky (4.10) and (4.11)
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q(41 0 q 0 /3 1/3 1 /3- h o  (-L h +O(h +
E
)

(4. 1 O 40)

-1/3 1/34(4 )dC q 2  h2{ ) q,
2 4 0= + ( r { 

1 / 3 
1  1 + ( o 1 / 3

20 2/ ho 2h0oh 2

Thus by the Appendix

)1/3

M h1/'3 + ( + (h + C

2 2 10

where gl({) is monotone decaying with

91 91lim - 2 = 1, g(o) < 0, im - 2 -I;I

For the original equations (4.7) a standard perturbation analysis gives us in any finite

interval 0 1 x 4 x4'

h h 2 + O(1/3

2 2 3

(4.19)

1/3 1 -]3/3(
/  / 3

g(;)=( h) Tg([ -h]3 + 0(h + C
22 1 2 30

Thus we can shoot through the turning point. In particular, we can choose x4  so large

that the conditions of Theorem 3.1 are satisfied. Furthermore

g(x4 )/h(x 4) = T; + u(h-3/2 + C
4 4 0

Thus we ca continue the solution ot our problem to the next turning point

1 1
x 2!2x -c-+ where we can repeat the process.

In the next section we need

Lensmd 4.2: Fur e sufticiently small H'''(x) can be estimated independently ot W.

-25-



-J

Proof: Away from the turning points this is clear because by Lemma 2.1 a bound for

H1''(x) depends only on a bound for G/H - T. To estimate H'' for 0 x x 4  we can

neglect the term 6
2
/
3 2  

in (4.7). Differentiating gives us

x
- f h(C)d,

+ h';'-0 Xh + h , h , h ,() e Uh (0)

We know that h (O)/C I /3 is bounded independently of i and therefore the same is true

1/3
for h (x) because h(V) > -O(93). This proves the lemma.
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5. Existence of Solutions

Let n ) 1,go,g1  be given with

Letsign 
g , (_ )n •

Let 1 f

(5) T 
n- 1

where T is the constant given in (A.6). Let

(5.2a) = I(g1/[UOg 1(o)])
3

where g(x) is the function described by (A.1) with 6 1 and (A.2a). Let

(5.2b) h2 - 1(2oog1 /[1g 1 (O))
3 1 + 1

Let Q be the bound on IH''(x)I determined in Lemma 4.2. Let

(5.3) -Q + 1

For the remainder of this section we require that

(5.4a) [;I 4 0, i.e. 1;1 4 Be, T 1

(5.4b) h2 4 h 2 4 h2•

Let (G(x,E;;,h2 ),H(x,c;;,h2)) be the solution of (2.1), (2.2) which arise from the

pair (g(,E;p,h 2),h(t,e;M,h 2)) which satisfy the boundary value problem (3.8), (3.9).

The constant Q is fixed with a >> 1.

By the arguments developed in the previous sections we obtain the following results.

Theorem 5.1: Let n ) 1 be a fixed integer. If a is chosen large enough and C small

then (G(x,C;;,h2 ),H(x,C;,,h 2 )) exist on an interval (O,B] whose length B is of order

1. The function G(x,E;,h 2 ) has at least n zeros

(5,.5a) 0 < x1 < x2 < ... xn < 8.

The function H(x;Eis,h 2 ) has at least n relative minima

(5.5b) 0 < y 1 < Y2  
<  

... 
<  
Yn < B .

It go 
< 

0 then G(x,C;P,h ) has another zero x0 with 0 < x0 < x1. These numbers

satisty

(5.6a) 0 < xj - yj o(1) as c * O, j = 1,,...,n

(5.bb) x1 = 2V + o(1)

(5.bc) -'<j +1 - x3 = (210)/ I Ij- l + o(1), j = 1,2....n

i -27-
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Also

(5.bd) H"(X n,£,,h 2 ) h2 + o0)

On the interior of the interval (xj.lxj), j = 1,2,...,n we have

(5.7a) H(x,6;ah 2 ) = h2  (D - coslj~t -'(x - xj,)J + o(1)2 2(j-1)j-

while

(5.7b) G(x,c; ,h2 ) - ( H)J-lk(x,£e;,h2) + 0(0)

2 2

It 0-SC then

(5.8a) H(Xn,3;,h 2 ) > 0

and, if M -B then

(5.8b) H(X ,e;-O,h < 0

It h2 - h2, then

(5.9a) G(x ,,2 = S12) 1 i/in-1 (0) £2/3 + o(£ /3) > g1 C

np22'

Similarly, if h2 = , then

1/3

(5.9b) G(Xn,1,,h) h [ 2) ITIn-1l(0)],2/3 + o(E2/3 ) < 2/3

Corollary: There is a choice of u,h which satisfy (5.4a), (5.4b) and
2

(5.10a) H(xnC; ,h 2 ) 0

G(x n,6;u,h2 ) -g1
£2 / 3

Proof: Let £ > 0 be so small that Theorem 5.1 holds. Consider the mapping

(5.11a) ( 2,h2) (G(x n,;;,h 2),H(x n, C,h 2))

With

0.,11) 4 0s, -- fh- 2 2 2

Since H"(XnI,;h2 h2 > 0 the implicit function theorem shows that xn  defined by

the n'th mint

H'(Xn ,£;,h 2 ) 2 0

is d continuous function of (M,n2)o Thus, the mappinq (5.11a), (5.11b) is a continuous

mappi nq.
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The properties (5.5a), (5.5b), (5.ba), (5.bb) together with an elementary "degree"

theory argument see (201 shows that there is a solution of (5.7a), (5.7b). To see this we

consider the homotropy

Gt(Xnc;,h 2) 2 tg[2 - i ; -h2 + (I - t)G(x n,;i,h2) 0 4t 1

2 -2

H t(xn E;;,h ) = t + (0 - t)H(x n,1I,h 2), 0 4 t ( 1

As t varies from 0 to 1 the inequalities (5.5a), (5.5b), (5.6a), (5.6b) continue to

hold. Thus, throughout the homotropy, there is no solution on the boundary of the region

described by (5.11b). For t = 1 the equations read

(5.12a) [2- ( h2 h 2)]g1 qg
2 -

h2 -t2

(5.12b) 0

There is a unique solution,
1 - 2 2 , =

h2 3 2 3 -2'

Thus, there is a solution h2 (t),Ii(t) for every t e (0,11. In particular, there is a

solution for t 1 1 and our problem has a solution (see (201).

This corollary implies the truth of Theorem I. Theorem II and Theorem III follow as

indicated in the Introduction.
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Appendix

In this Appendix we are concerned with the equation

(A.1) q" + x26 x q 2
6
xq - 0 6 > 0

In fact, we need only consider the case 6 - 1. For, if q(x;1) is a solution of

(A.1) - with 6 . 1 - then, for any 6 > 0, a direct calculation shows that the function

Y(x;6) - q(6
1
/
3
x,1)

is a solution of (A.1) with this value of 6.

Our first concern is with the asymptotic behavior of solutions q(t)(= q(t.1)) as

+ e.

A simple calculation usinq the Liouville-Green (or WJ) approximation (see chapter 6

of 114)) leads to the followinq results.

Case 1: As x - there are two linearly independent solutions q1 (x),o 2 (x) and

(A.2a) ql(x) - x 2 ,  x 
+

3(.)q 2(x) x 4exp--

Thus, there is a unique function, q (9), which satisfies (A.1) with 6 - 1 and

(A.3) ql(x)/x 2 + 
1, x 

+

Purthermore, a more careful asymptotic expansion of gl(x), e.q., usinq the methods

described in f25, pp. 52-611 yields,

(A.4s) ql(x) - x
2 (1 + 2/3x2 ), x + 

-

(A.4b) 9(x) - 2x(I + 2/3x2)(I - /2), x -

and

(A.dc) ql(x) - 2, x*-•

Case 2: The same calculations show that: as x * 4 there are two linearly independent

functions 1 (x),P2(x) which satisfy (A.1), with 6 = 1, and

(A. Sa) .0(1W - x-4exp[- ] x +0,1- 31

(A.5 x) ~ x 2 ,  x +

Since the function qj(x) which is characterized by (4.3) can be written as a linear
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combination of 1 (x) and 02 (x) we see that there is a unique constant, call it T,

such that

(A.6) Lim gCx)/x
2

Lemma A.1: Let f 1 (x) be the solution of (A.1) - with 6 - 1 - described by (A.5a). Then

(A.7) 001 0) #0

Proof: Suppose (A.7) is false. Then

A = (0) * 0

Suppose A > 0. An easy argument based on the maximum principle - or based on the

identity
d3 3

d 2xoexp[jdx = ;ex[,oI

shows that

(A.8a) 0;(x) > 0, 0 4 x <

(A.8b) 01 (x) > 0, 0 < x <

The identity
3 3

(A.9) d xx( A 9 j , e p [ - ] = 2 4P e x p [ -
dx 3 1 exp[]

and the fact

01(0) = 0

implies that

p((x) 0 0, 0 ( x < .

Thus

01(x) > Ax

which contradicts (A.5a). If A < 0 we apply the above argument to -401(x).

We now turn to a more detailed discussion of the function gl(x).

Theorem A: Let g1 (x) be the function which satisfies (A.1) - with 6 = I - and (A.3).

Then

(AlOa) qg(x) < 0, < x <

(A.lOb) xq ' 0, - X < a

Let g aenote the unique point at which qg(x) vanishes, i.e.,
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(A. 1 la) q = 0

Then

(A.I1h) -(2/3) 1/ 3  
< 0

Finally, the number of (A.6) satisfies

(A.12) < 0.

Proof: For neqative values x << - R < 0 we have

ql(X) > 0, ql,(X) < 0, x << -R < 0.

Since q1 (x) satisfies (A.1), q1 (x) cannot have a positive relative minimum on the

interval (-",0). Thus, either

(A.13) q1 (x) > 0, -" < x < 0

or there is a first point < 0 at which (A.11a) holds. Suppose (A.13) holds. T.hen

(A.9) shows that

qg(x) > 0, - < x < 0

Let x 1 << -1 and x 1 < x < 0. Then

xCA.14 0 =qIfx 1 )x I J (t)1/t 4 dt < ql(xl)/xl

x I

Let x, + -". 7hen

0 ( q1 (x)/x
2 

< lim q(X 1 )/x
2 

- 1
Xl+-M

Thus, if (A.13) holds,

0 < ql(x) 4 X2 , -1 < x < 0

Rut then

q1 (0) - q;(0) 0

and

q1 (x) B 0

Since this is impossihle, there is a first pnint 4 < 0 at which (h.11a) holds. Moreover

(A.15a) q (x) < 0, - < x < 0

(A.15b) q7(x) > 0, -" < x < 0

-32-
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we now estimate t rrom below. We have

911()- 2yj(j) -
2
g-()

Let X< be any point such that

(A.1b) g, '(X) f- 0, x, 4 x .

Then

0 < g7(4) 4 g(x) 4 g(xl), xi ( x < 0

Returning to (A.14) we have

g1(g)/g = U g 1 (xl)/Xi - f [g(t)/t
4
]dt

x1

U < g1 (x1)x2 = fg [gI(t)/t
4
]dt r g,(x,) fg [1/t

4
]dt

x x

Thus

tA.17) 0 < gltxl)/x2 4 fg7(x,)/3(1/141
3
) - (1/Ix 1 1

3
)] ( g1(x 41/(3j)1

3 
.

Let x, + _, under the condition that (A.16) hold. Either x, + x a finite point at which

g i 
) 

= 0

or x1 * - In either case

Thus, (A.17) yields 2

0 • 3  4 2/3 .

Thus we have proven that (A.11b) holds for the "first" zero of g(x).

Our next task is to extend the range of the inequalities (A.15a), (A.15b) to the

larger interval (- ,).

Let 6 = i and let Y1 (x),Y 2(x) be the special solutions of (A.1) which also satisty

(A.lba) YI(N) = U, Y (U) = -1

(A.18b) Y2 (0) = -1, Yp(0) - 0

Lpt r, dnd r 2 be the smallest (in absolute value) neqative zeros of YI(x) and

Y,(x) rspplcttvely. it is dn easy matter to obtain intinite spries sollitinn tor

-33
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Y1(x),' 2 (x) and see that

jr1 i > 1, tr21 > 1

These estimates, together with (A.11b) and the oscillation theorems (see [16, page 421)

show that

g1(x) < 0, g< x 4 0.

Thus

(A.19) g1 (0) 0

Let

9,(x) -dl:l(x) + d2Y2 (x)

Since g,(4) - 0 and Y1() > 0, Y2 (4) < 0 we see that d, and d2 are of the same

sign. But (A.19) gives

d2 (-1) - g1 (0) < 0

Thus,

d I > 0, d2 > 0,

and

q1(0) - d1 < 0

But, (A.1) implies that gl(x) cannot have a negative relative maximum in the interval

(4,0). Since gj(g) < 0 and gj(0) < 0 we see that

911(x) < 0, x 0

On this interval we have

g, - 2xg I - x2g! > 0, 4 x < 0

Hence, we have the inequalities (A.lOa) and (A.10b) on the interval (--,0]. The

completion of the proof now follows from the initial conditions g1 (O),gI(O), the maximum

principle and the identity (A.9).

Remark: Since the theorem holds the quantities 4 and r can be determined - to any

desired accuracy - by numerical computations. Results of Jerry Browning of NCAR indicate

that

" -. 91.
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